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TRIANGULATION OF MULTISTATION CAMERA DATA TO LOCATE
A CURVED LINE IN SPACE

By Clifford L. Fricke
Langley Research Center

SUMMARY

A method is described for finding the location of a curved line in space from local
azimuth as a function of elevation data obtained at several observation sites. A least-
squares criterion is used to insure the best fit to the data. The method is applicable to
the triangulation of an object having no identifiable structural features, provided its
‘width is very small compared with its length so as to approximate a line in space. The
method was implemented with a digital computer program and was successfully applied
to data obtained from photographs of a barium ion cloud which traced ouf the Earth's
magnetic field line at very high altitudes.

INTRODUCTION

A unique and powerful tool in magnetospheric studies involves the deposition of
bharium vapor ata point in the magnetosphere through the use of chemicals or explosives
carried aloft by rockets. The barium atoms are rapidly ionized by sunlight and thus form
2 barium ion cloud which extends along the magnetic field line and becomes "frozen" to it.
The barium ion cloud, on account of its resonant scattering of sunlight, is visible to ground
sites when viewed against the night sky and hence serves to delineate the magnetic field
line over a considerable are length. This condition permits a determination of magnetic
field line orientation and shape. From the motion of the cloud one may obtain the convec-
tive motion of magnetospheric plasma and hence the electric fields which drive such
motions.

The accuracy of locating an object in the distant magnetosphere by triangulation
methods is extremely limited by the relatively short baselines available. In the case of
the barium ion cloud (ref. 1), even though the observation sites were widely dispersed on
the Earth, the cloud altitude was about five times the baseline-distance. Hence, it was
necessary to use every means possible to improve the accuracy such as calibration for
distortion in the cameras, orientation of cameras using stars in the photographs, and the
use of more than two observation sites.



Existing triangulation methods were limited in one respect or another: methods
using several observation sites triangulated only on points (refs. 2 and 3) and methods
which triangulated on lines could use only two observation sites (refs. 4 to 6). Table I
shows a comparison of the various methods.

In view of these limitations, it was desired to develop a triangulation method which
allows for a cloud that is curved in space, extends over a large arc, and is to be photo-
graphed at several observation sites. The difficulty in obtaining a solution by triangu-
lating on an extended object from several sites lies in the fact that the intersection of the
several surfaces defined by the necessarily inaccurate data from several sites does not
determine a unique line in space. Thus, some criterion is needed to deterrnine the mast
probable solution when all the data are taken into account.

Methods already exist (refs. 7 to 9) for precise conversion of images on photographs
to pointing directions from each site, such as azimuth as a function of elevation. This
note describes a method and a computer program that find the most probable line solution
from input data on azimuth as a function of elevation from several observation sites.

FORTRAN VARIABLES AND SYMBOLS

FORTRAN variables are the same as algebraic symbols, except that they are under-
lined when used in equations in the text.

A equatorial radius, 6378.166 km; in subroutine SUMRES, angle in radians used
to weight residuals

AZ(L,N)  azimuth angle from site L, data point N

a,b,c coefficients in quadratic equation

B polar radius, 6356.784 km

BC(I,L,N) Ith coefficient in least-squares fit for site L, data point N
CLAT geocentric latitude

CR geocentric radius

C1,C2,C3 coefficients in least-squares fit to data for azimuth as a function of elevation
{az-el)



D(L)
DA

DC
DDA
DEG
DIST(L)
DNA
DR

DX,DY,DZ

E(N)

EL(L,N)

EM

E1,E2,E3

GLAT

residual (minimum angle between point P and az-el curve)

residual from site L

increment given to PLON

discriminant of cubic equation

intqrpolation correction given to PLON to give minimum point

degrees per radian

angle between point P and end data point on az-el curve, site L

altitude increment

increment given to PLAT

axes in topocentric coordinate system; on horizontal plane in easterly direc-
tion, on horizontal plane in northerly direction, and in vertical direction
perpendicular to horizontal plane, respectively

root-mean-square residual; in subroutine GGRGCN, ratio A2/B2

minimum root-mean-square residual with respect to both latitude and longi-
tude; thus, the solution at point N is defined

elevation angle from site L, data point N

minimum root-mean-square residual (with variable longitude) for a given
latitude

in subroutine LONMIN, root-mean-square residual for three consecutive
longitudes

flattening factor, 1/298.3; in subroutine SUMRES, weighting factor depending
on DIST(L)

geographic latitude



GLON

HI
IN

IS

LP

NBL
NB(L)
NC(L,N)
ND

NO
NP(L)

NS

N1
N2

P,QR

geographic or geocentric longitude

geographic altitude, km

altitude of first estimated trial point

number of iterations in subroutine MINISOL (usually 3)
number of sites using data points on the end of az-el curve
observation site number

index to designate line (LP=1) or point (L.P=2) solution

in program LARC, data point number, or solution point number; in subroutine
RESDUE, data point nearest the trial point (PAZ,PEL)

number of az-el data points {used for NB(L))

number of az-el data points from site L

az-el data point number of site L used to obtain solution point N
index used to increment solution point number N by +1

number of az-el data poinis used in least-squares fit

data point number nearest solution point from site L

number of observation sites =

particular data point within the set NO

smallest solution point number

largest solution point number

coefficients in cubic equation



PAZ
PEL

PI

PLAT
PLATG
PLATI
PLON
PLONI
PR

R

RA

RAD

RP
SH(L)
SLAT(L)
SLON(L)
SR
TALT(N)
TLAT(N)

TLON(L)

azimuth of point P

elevation of point P

geocentric latitude of point P

geographic latitude of point P

geographic latitude of first estimated trial point P
longitude of point P

longitude of first estimated trial point P
geocentric radius of point P

radius of revolution of spheroid

range from observation site S to point P

radians per degree

projection of geocentric radius on equatorial plane
altitude of observation site L

geographic latitude of observation site L

longitude of observation site L

radius from Z-axis of observation site

alitude of solution point N

geographic latitude of solution point N

longitude of solution point N



WT(L) weighting factor for observation site L

XY, Z geocentric coordinate axes; in equatorial plane in direction of Greenwich, in
equatorial plane directed to make a right-handed system, and in direction
of north pole perpendicular to equatorial plane, respectively

XA YA,ZA geocentric components of line-of-sight vector from observation site S to
trial point P

XD angle hetween point P and data point on az-el curve
XP,YP,ZP geocentric components of trial point P
X5,YS8,245 geocentric components of observation site S

X1,Y1 independent and dependent variables, respectively, in least-squares curve
fit to az-el data

¢,8,¢ Eulerian rotation angles
GENERAL DISCUSSION OF MULTISTATION TRIANGULATION

Case of a Point Object

Consider first the simple case of a point object in space observed from several
sites. (Fig. 1 illustrates the case of three sites.) In general, the measured lines of
sight will not intersect because of errors in measuring the pointing direction from each
site. One would expect the probable error in pointing to be the same at each site, where
the error in pointing is defined as the angle between the measured direction and the actual
direction of the object. In order to find the most probable solution, consider a trial solu-
tion point P in space and define the residual from a site as the angle between the mea-
sured direction from that site and the direction of the trial solution (D(1), D(2), and D(3)
in fig. 1). The most probable solution, if it is assumed that pointing errors at each site
are random, then, would be the one which minimizes the sum of the squares of the resid-
uals D(1)2 + D(2)2 + D(3)2. (See ref. 10, pp. 107-109.)

Case of a Curved Object

Next, consider the problem of locating a curved line object in space which is illus-
trated in figure 2 for three observation sites. The curve for the azimuth as a function of
elevation from a single site defines a conical surface in space. With data from only two
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sites, intersection of the surfaces is unique, but with three or more sites, the intersec-
tions are no longer unique.

Generally, there is no distinguishable feature on any part of the cloud. The end
points cannot be determined since they fade out gradually, and hence the location of the
end depends on the exposure of the photograph, and brighiness of the sky background.
The center of the cloud length may sometimes be brighter, but it cannot be located accu-
rately. Hence, if the curvature of the azimuth as a function of elevation is small, only
errors perpendicular to the curve are important, since any error along the curve merely
slides the curve on itself. It is reasonable to expect, then, that the probable error per-
pendicular to the surface defined by the az-el curve is the same for each site. Thus the
residual of a trial point will be defined as the angle between the line of sight of that point
and its projection on the conical surface defined by the curve for the variation of azimuth
with elevation from the specified site. This angle, of course, represents the minimum
angle between the line of sight to the trial point and any line of sight on the conical sur-
face {D(1) in fig. 2). If the trial point is to lie on the most probable solution curve, then
the sum of the squares of the residuals {rom all sites must be minimized. (This pro-
cedure is equivalent to minimization of the root-mean-square (rms) value of the
residuals.)

It has been assumed throughout that the object is a line in space, If the ohject has
lateral dimensions, then it must possess a center line which is identifiable as such from
every observation site for the method to be applicable.

Minimization of Root-Mean-Sguare Residuals

Even though the desired seolution is a curved line in space, the method described in
this paper successively solves for specific points on that line, For convenience, the inde-
pendent variable is altitude (which will be converted to geocentric radius} so that each
point will be at a selected altitude; if the cloud had extended beyond the magnetic equator,
then the independent variable should be latitude in order to be single-valued.

Thus, consider a trial solution point P which will remain at a fixed geocentiric radius
(which is essentially equivalent to a fixed altitude); the problem is to find the latitude and
longitude which minimize the root-mean-square residuals. First, assume a trial latitude
A and vary the longitude along A until 2 minimum root-mean-square residual EMy is
found, as indicated in figure 3. Next, increment the latitude to some new value B, and
again vary longitude until a minimum as indicated by EMgp is obtained. Thus EM, the
minimum root-mean-square residual with variable longitude can be obtained as a function
of latitude, and one can readily find the latitude that minimizes EM; this latitude and its
corresponding minimizing longitude is the point at the selected altitude that lies on the



most probable solution curve., A description of the computer programs which use this
method to find the most probable solution curve is given in the following sections.

COMPUTER PROGRAMS

The main program, called LARC (listing and flow chart are given in appendix A},
in addition to reading cards, processing data, and printing results, has the main function
of iterating the altitude at desired preselected intervals, Program LARC calls subroutine
MINISOL which first calls subroutine LONMIN in order to minimize the root-mean-square
residuals with respect to longitude, and then iterates the latitude in order to find the min-
imizing latitude.

The subroutines will be discussed first and are lisied in appendix B. FORTRAN
variables in the computer programs will have the same name in the text, but when used
in algebraic equations, they will be underlined.

Appendix C describes the geographic, geocentric, and topocentric coordinate sys-
tems. The conversion from geographic to geocentric {subroutine GGRGCN), as well as
the formulas for the inverse conversion (subroutine GCNGGR), are also given in
appendix C.

Conversion From Geocentric to Topocentric Coordinates

Subroutine PAZEL converts a trial solution at a point P (given in geocentric coordi-
nates, PLAT, PLON, and PR} to local azimuth and elevation from an observation site S
with geographic coordinates SLAT, SLON, and SH. Figure 4 applies.

The first part of the program converts the observation site to geocentric coordinates
XS, Y8, and ZS by using the same method as in subroutine GGRGCN.

The geocentric coordinates of the trial point are converted to Cartesian coordinates
XP, YP, and ZP. The geocentric coordinates of the line-of-sight vector from observation
site S to trial point P are

Xa| |XP - XS
YA|=|YP - Y5
zA| |ZP - 28

The geocentric axes X, Y, and Z can be brought into coincidence with axes DX, DY,
and DZ by rotation through the Fulerian angles



¢ = SLON + 90°
g = 90° - SLAT
v=20

Thus, from use of formulas derived in reference 11,

DX -sin SLON cos SLON 0

DY| = |-sin SLAT cos SLON  -sin SLAT sin SLON  cos SLAT

D7 cos SLAT cos SLON cos SLAT sin SLON sin SLAT

T E R

-

Then the azimuth angle is

1 DX
AZ = tan™ —
T DY

and the elevation angle is

EL - tan"1

Sorting of az-el Data

Since certain subrouiines require the az-el data to be ordered from one end of the
curve to the other, it is necessary to insure that they are. Subroutine SORT(L) sorts the
az-el data from each site L, for convenience, in such a way that the first point from each
site corresponds to the high altitude end of the cloud; this is accomplished by setting the

variable

This particular equation, of course, was made to hold for a particular orientation of the
cloud and a particular set of observation sites.



Since elevation was the independent variable and single-valued, the ordering was
done in terms of that variable only.

Computation of Second-Order Least-Squares Fit to
Successive az-el Curve Segments

The accurate computation of the residual is an important part of the triangulation
method. The original az-el data, in a striving for accuracy, usually consists of many
arbitrarily located closely spaced points along the curve, so that a least-squares curve
fit can be used to reduce the random errors invelved in measuring the cloud center line,
A second-order fit is sufficient for defining a segment of the curve since only a short
interval is needed in the vicinity of the trial point P. The number of points used in the
curve fit is NO and depends on the number and quality of data points.

Subroutine BCOEF(L,N) computes the three coefficients BC(3,L,N) for a second-
order least-squares curve fit from a given observation site numbered L, with the data
point N as an origin. The NO data points used in the curve fit are centered about the data
point N (except near the ends of the curve) and hence NO is an odd number. It is to be
noted that the coefficients are calculated for every data point, of which there are NB(L).

An exact coordinate conversion to the point N as origin would involve the Eulerian
angles AZ and EL, but since the angular deviations from this origin will always be small,
the two orthogonal angular components are

X1 = AEL
and

Y1 = AAZ cos (EL)

as illustrated in figure 5. The independent variable in the quadratic formula for the par-
ticular data point NV within the set NO is

The dependent variable is

EL(L,N) + EL(L,N)
Y1 = (AZ(LNV) - AZ(LN))eos ——— ———

10



Computation of Residuals

Subroutine RESDUE(PAZ ,PEL,L,D,XD) finds the residual D of a trial solution point
when the azimuth PAZ and the elevation PEL of the line of sight from site L to the frial
point P are given.

The first part of the subroutine finds the data point N which is nearest the trial
point PAZ PEL, starting with the point from the previous calculation which is stored in
NP(L) as a first try.

The next part of the subroutine computes the residual. Point P has the coordinates
(with data point N as the origin)

X1 = PEL - EL(L,N)

PEL + EL(L,N)
Y1 = (PAZ - AZ(L,N))cos —

The second-order curve fit to the data points is

¥=Cl+C2X+C38X*

where

C1 :E(lsésﬁ)s e

The distance between point P and the curve is given by
D% - (x1 - 0%+ (¥L - V)

To find the minimum distance, differentiate D2 and set the result equal to Zero:

ay
X1-X +(¥1-Y)—-=
— T T

Substitution for Y and dY/dX from the preceding equations gives the standard form
for a cubic

11



where

1+c2% 4 203(ct - Y1)

&

2C32

caet - ¥y - X

|

23

The solution of this cubic equation is standard, but the type of solution depends on
the value of the discriminant DC {(as shown in the listing of subroutine RESDUE). If DC
is greater than zero, there is one real root which is computed. If DC is less than zero,
there are three real roots. The residual is thus

D= (¥ - 2+ (x - x02)"2

where X is a real solufion of the cubic, and Y is the corresponding value from the equa-
tion for Y given previously. The subroutine finds the real root which gives the smallest
D.

For the case of a point solufion, the subroutine is specialized with LP = 2, wh1ch
causes the subroutine RESDUE to go to statement 10, and computes

EL + EL(L, K))

P
= (PAZ - AZ(L K))cos( >

where AZ(L K), EL{L,K) is the data point from site L.

12



Calculation of Root Mean Square of Residuals

Subroutine SUMRES calls subroutine PAZEL to calculate azimuth and elevation for
a trial point P, and then calls subroutine RESDUE to calculate the residual from each
observation site, Then it computes the root-mean-square value of the residuals.

It usually happens that the cloud viewed at one site does not extend as far as from
another site. Thus, it is desirable to extrapolate data from such sites, but with reduced
weighting. Subroutine SUMRES reduces the weighting by the factor

A

A + DIST(L)

where DIST(L) is either zero or equal to DX, the distance between the trial az-el and the
nearest data point NP(L) on the az-el curve, and A =0.5/57.3 radians, a somewhat arbi-
trary fixed angle of 0.59. Finally, DIST{L) is set equal to zero for the two sites having

the smallest value of DIST(L).

Variation of Longitude To Obtain Minimum Residuals

Subroutine LONMIN(PLAT ,PLON,PR,DR,EM) finds the minimum value of the root-~
mean-square residuals EM as the longitude PLON is varied while keeping the geocentric
latitude PLAT and radius PR constant,

The procedure is to increment PLON by DA {(which is initially equal to DR}, chang-
ing directions when necessary to go through a minimum, calling SUMRES to calculate the
root-mean-square residual. Consecutive root-mean-square values are labeled (and rela-
beled as PLON is incremented) E1, E2, and E3 so that when E2 is the smallest, the PLON
which gives minimum can be approximated by using the following analysis. '

Assume that the root-mean-square residual E is a second-order function of the
longitude DA.:

E = a + bDA + cDA?

For minimum E, the longitude is

From the three values E1, E2, and E3, and the corresponding longitudes -DA, 0,
and DA (using the longitude of the middle point as origin) one can obtain by substitution
into E

13



EI - E3

b=-
2DA
E3 + El - 2E2
C=
2D’

from which the longitude (relative to point 2) for minimum root-mean-square residuals is

(E1 - E3)DA
DDA = ——————
—— 2(El - 2E2 + E3)

The increment DA is then decreased by a factor of 10, and the procedure is repeated
one time,

" Minimization With Latitude

Subroutine MINISOL(PLAT,PLON,PR,DR,IN,E) starts with the trial point PLAT,
PLON, PR and while keeping PR fixed, varies PLAT. TFor each PLAT, LONMIN is
called to find the minimum root-mean-square residuals with respect to PLON,

When three consecutive minimum root-mean-square residuals E1, E2, and E3 are
found so that E2 is the least, then an approximation is made (same method as in LONMIN,
except independent variable is now latitude DR) to determine the PLAT for minimum
residual, The increment DR is then decreased and the procedure is repeated until IN
iterations are made (typically three, with consecutive DR values of 0,19, 0.01°, and 0.0019).
Upon returning to LARC, the new values of PLAT and PLON give the solution at the par-
ticular PR.

Program LARC

The main program is program LARC, which first reads in the observation site data
cards in geographic coordinates. For each pass through the program, a triangulation is
made at one instant of time by using az-el data from simultaneous photographs at each
site; thus a solution curve of latitude and longitude as functions of altitude is obtained.

After the time is read in, azimuth and elevation data cards from each site are read
and stored in AZ(L,N} and EL{L N); L refers to the site number and N to the data point
number. Then subroutine SORT(L) sorts the data into either increasing or decreasing
elevation angles,

14



The BC(I,L,N) coefficients are then calculated for each site L and for every data
point N by calling the BCOEF subroutine.

The first estimated solution is chosen near the center of the cloud; since the first
estimate may be far from the solution, it is better to start in a region where the data have
the best guality. An integral 100-km value of altitude is used and is read from a data
card. The first solution point is labeled N = 50 with altitude inecrements DNA = 100 km
corresponding to increments of 1 in N, where N now refers to a solution point and not a
data point. Subsequent trial solutions use the previous solution point.

One of the main difficulties in the solution occurs near the ends of the cloud.
Because of differences in exposure, range of cloud, orientation, and visual conditions, the
cloud visibility may extend farther at one site than at another. Subroutine SUMRES will
automatically extrapolate curves when necessary, but will give less weight to the extra-
polated parts. Hence a procedure is needed to stop the calculation when the solution
curve is going beyond the data from every observation site. This procedure is accom-
plished with the index IS which is equal to the number of sites using a data point on the
end of the curve in subroutine RESDUE. When all sites except one are extrapolated
beyond the end of the az-el curve, then the solution is stopped, and started again at the
middle (N = 50) with the altitude now incremented downward.

Solutions are stored in TLAT(N), TLON(N), and TALT(N). For each solution point,
the point on the az-el curve for each site is stored in NC(L,N) and the root-mean-sguare
residuals are stored in E(N) in units of degrees. Finally, the solution is printed out.

ILLUSTRATIVE CASE

As an example, actual data from the barium ion release of September 21, 1971, will
be given. Three observation sites were used: (1) Mt. Hopkins, Arizona; (2) Cerro Morado,
Chile; and (3) Wallops Island, Virginia. {(Coordinates are given at beginning of table 11.)
Table II shows a printout of the az-el input data for the time 3 hrs 18 min 10 sec UT
(13.307 min after release). There were 36 data points from site 1, 75 from site 2, and
28 from site 3. The number of points NO used in the least-squares fit was 25, which rep-
resents about 1.70 of arc when viewed from site 2, and 2.7° when viewed from the other
two sites.

Table III shows the final solution. Total central processor time for the job on the
Control Data Corporation model 6600 computer was 19,5 seconds. A fest was made to
see how many iterations were made in the solution. For this case, SUMRES was called a
total of 2922 times, or on the average, 104 times for each solution point at each altitude,
The root-mean-square residuals were of the order of 0.0045°,

15



CONCLUDING REMARKS

A computer program for the triangulation of azimuth-elevation {(az-el) data from
several observation sites has been presented. Because of the relatively short baseline
used and the high accuracy required, it was necessary to make a special effort to reduce
the effects of random errors. This reduction was accomplished by using several obser-
vation sites and many data points from each site.

An optimal solution was achieved by requiring the minimization of the root-mean-
square residual of all the sites and by using a least-squares curve fit to the az-el data.
An illustrative example using three observation sites was given for an actual barium
cloud. The root-mean-square residuals were of the order of 0.005°.

- Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., February 6, 1974.
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APPENDIX A

PROGRAM LARC

Program Listing
The listing and flow chart for program LARC are presented in this appendix.

PROGRAM LARC {INPUT, JUTPUT) o ) o
N VR .

*t%%  THIS PROGRAM SOLVES THE PROBLEM OF LOCATING A CURVED LINE [N SPACE GIVEN
* SIMULTANEQUS AZ~Fl DATA FROM SEVERAL DASERVATION STES, THE METHOD FINDS
e _SUCLESSIVE LAT AND LON PNINTS AT SELECTED ALTETUDE INCREMEMTSe. EACH POINT
18 VARIED IN_ BITH LONGITUOE AND LATITUDE IN ORDER T0 MINIMIZE THE "RMS
% RESTOUALS FROM ALt THE 08S SITESe
L _THE RESINUALS ARE COMPUTED USING A 2MD QRUER | EAST SQUARES CURVE FIT 1D
% THE AZ-EL DATA IN_THE VICINITY CF EACH TRIAL POINT,
x THE PROGRAM_FINDS A COMPLETE CURVED LINE SOLUTION FDOR_SEVERAL EPDCHS
E SRCTIMES e e
c R -
LISMENSION _ TLAT(99), TLONI991,TALT{99)
S BIMENSIOM E(ST), NC(5s 99 _
COMMONZSTTES /NSy SLAT(S) 4SLONIS) s SHIS) ,WT(5),9EG
o CUMMON/ALTME/AILE ¢ 1G0NELT15, 1500 4BC{3,5,1S0)sNP{ 5 14 NBE5),LP
F=6371a2 % P1=3,14159265359919 $ PRAD=P1/180 & DEG=1/RAD -
= 557 IN ALTITICE INCREMENT N - -
BHA=100, _ S ‘_ ) _

L MTALN=MT{Z =T (3 =WT (&)=WwT (50 =1, .
= EAD IN MUMBER CF _DBS SITES - L . o _
L ¥TEAD 1J,u5
1G FORAT (IR o o o
R f’PW’T’ 'ﬂw NCDF e .

171 SULATTONE /)
e T CANEDINATES (IM DEGREES AMD KM FNR EACH SITE AND
"'"”“uu 11 g=zlﬁgﬁ - e
Tt SLATILY mgjgilsngj - - -
12 FZu.lD ] L e
SLAT CNLLYy SHIL) ,
112 i SLA of%  SUON=HFS, 4%  SALT=%FR.&) o
ATV SSTAT LR RAT € SUANTL) = SUOH(L 1%RAR - B
1T OPRTINIE o - §
mrgrpal ]S 1S BEGINNING LF SOLUTIDN FOR EACH EPLCH IR TIME.
* Feap TN T[wE T e -
Lla” THEEAD 111, THE MIh, SEC N o -
1117 TTURYATIII5I24F Tl o - ] o
% (F T1iF CARD TS BLAMW, STOPS-THF LAST CPOCH HAS BELN PROCESAED,
U IRUIHReEWL DY STUP . .
% PRINT TIME

FRINT llCrlHi |w“['\s;§Fr )
113 flwr"\f’f\Tf"‘lTIMF"‘IJ* HR”!E" ""[N"F’ 1* SEC*}

x Ib[T[ALE?E STARTING PAINT FOR LATER SEARCH 0 AZ—EL CURVE i
pw1-\:04‘1—1\49(3}A\lP(M"‘dPls!- e e - -
ke |FA1 14 [NPUT A7 EL OATA FMR EACH SITE

00 2L L=lyNs



APPENDIX A — Continued

= CEAL TDENTIFTCATION INFPRMATION 0N DATA CARD, WHICH HAS COLUMY 10 BLANKe
* TR SAME CARD ALSQ READ AZ-FL FQR ONE DATA POINT. -
My
113 FEAN 23,LST,1S1, 152, TIME,AZ1 fELL ___”ij:;——gf——u—wfffg~——~*—
23 FisRmaT (SXy 1,81 39A6AL0,22X,2F11.0]) T T
* [F E5T {COLUSN 100 1S NCT BLAMK, EMND OF AZ-EL DATA FOR THIS SITE 1§ .
] INDBICATEN, . R
[FOLSToNELS) G0 TN 22 B e
r=hi] _ $ ORBILY=N ) - ] T
% CTRRE AZ-EL DATA AND PRINT AZ, ELs AND IDEMTEFICATION INFORMATION
w2l !-Ali__ﬁ_ ELULy)=EL]
tnr»* L3y sNy AZCLaNE LI, NV ,1S1,152,TIME
123 rlr AT STA hiaw PT fia*f“"f=" FC 4% EL=¥F944,R104A0,A10) T
* CrayERT EL T RAOTANS il Al g S S .
'LUL,M Ll i) wFan T T T T
* PUTOAL IR PANPER OUADRANT AND CHVERT T RADIANS T
IFlAZIL,W].iT 1Pue) A7 (L M =AZIL,NI=36T0, - -
ALTL P EATEL, RERAND N
S THo Ly ———— _
2z Ci T EHILE e e . _
# SORT AZZEL JATAIN SEDERTAFE FL -
(ML STRTOLY JhieR TROFL - _ o
21 ('mri!\ It - T B
T B _..f;_m_g_._...._____"._,‘_, R NEL=NE{L]
Lo1a 1y MBL
e LOMPUTE CORFFICIENTS FLR SECTND TRDER LEAST SQUARES LNCAL _FIT AT EVERY
= PATA P L[UT B CALCH CRS SITF, ____
13 CALYL BUCEE{L 5y s o TromTer T B —
% LTE 4 M=, 1S FH A LINE SOLYTINNG I 1S R, OF ITERATIONS 1N MINISDLa
Lhs] LTRSS
* PEAD FIRAT FSTIVATENY PLAT AND PLr™ IN GECGRAPHTC TEGREES AT A SELECTED
* SLTITUND HI AN PRINT UT, HU SHOULD ) EGHAL MUOLTIPLES JF ALTITUDE
* [P b e AENT ’ o ' Tt
EEAL) LA, PLATG AL N N T T

131 TUFATIZRLGL Y

PRTUT LA, PLATS, PUONHT

Li= AT (= [fTI‘Mrn TRIAL pp[uT L ATEEFe. 3% LREXE 7.3 ALT=#F5
LR | ’ . T o s
% TRITLALTZS ¢+ AT ND S0 THAT FIPST SCLUTINN PRINT 15 N=50 AND ALTETUDE WILL
2 190 R ASE,
MR £ D=l - S N
LATI =P AT T AT £ PLONI=PLONTRAL — —————
*x STAFTLNG PLALCC K12 ALTITUDF IMCPEAS[NG OR CLORFASING ] .
118 Dlﬂlu-plﬁ'l 8 oPLTN=PLANT ¢ HEHI N ) - :
g T AT ING PLACE FITROEACH SOLUTION POINT e .
14 P REg ] #RAL -
® [P EMEST &
NN i I
“ LRI RT T GENCLETETC )
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APPENDIX A - Continued

) o CALL GORGCHUPLATG My PLAT,PR) o B o
* F Ik SllL'JTI(]f\ P”l‘\‘T, TaFe PLAT A’\m PLUN NHICH MINIMIZES RN‘% ESLDUAL
* AT RAQTYS PR _ e

CLALL }i'\nsl L(P M P rN Pk DR IN,.'-“_(NH L e I

* ,V.,._...LLM/[RT BACK T(: {;['TFRAPHIF A’\JD DEGREES AND STORE ANSWERS

_l.ALL GCNGGRUPLAT p PRyPLATGpTALT{NTY &  TLAT(NI=PLATGXNEG
SLEI=PLONENES

% F(‘l-x EACH SITE STE: QE DATA I—"“IINT '\ILIM&[;P ,,,,, Hfd HIFH IS NEAREST THE SOLUTIOM o
e 141 L l"lg - e o L o
* OETTRMINE 20, fF STIES TWAICH ARE USING END POINT OATA T TT T T
141 cCiL,n I—W{Lp
15=

OO 16 KslyNS

CIFUMP{KIGLESL) T5=15+1

TFNP IR L GFaNRTKT) T5=15+1
16 (uldT[’\iUF o ’ i

% 4F ALL BUT JWE SITE USFD END-PGINT DATA, JUMP DUT OF LAOAP,
YRSV GE. NSy GG oTo 18 -
x CEF EMS RESTODAL 1S TOATGREAT JUMP OUT TR L20P ~
O TF{EIN) LGT,Ul13) GO TOOAS T
* IF RIS Tof CARGRE 1vP nuT OF L3O o
LR RN, 90, TR NLERLLT C8 TE1E T o o
* YNCREMENT b, G0 TR TE A START_NEXT SCEUTIIN PUINT
C T EHINARRD £ GO ID 1% o L
= IF ALTITUDE TS5 DR SING JUMP AUT CF LJCP.  ENTIRE LINE_SCLUTICN 1S _
* 0 NMOW F—IMISHH? T o T ] -
15 . 1) G0 TG EET T/ o —
¥ 7 RESET D SECTE STARY AT CENTER AND DECREASE ALTITHDE )
GEENTTTUTUTTTURT oy esT T € mns=-1 T T

331 Ri=H

* FRINT TIME AS HEADING Ff‘R CDMPLETE SFLUTION PQI
PRINT 382, [HQ ;'VH 4;%&( R i

382 FORMAT(wITIME *[2* HRG o ®I2% MIN  ¥FS541% SEC¥)
BRIMT 38 o L e

38 “YUR“AT{* LIT\E' SALUTIDN®)

PRINT 35 L - o
39 FOPAAT(=JALTITUNDE  _ LATITUDE _ RMS PES PTS ON AZ o
k} $3-FL CURVE*) - - o
- PRINT 0T TOTAL N3, CF | o - o
PRINT 3429 (MBLLIgL=]4N; o ~ o
342  FURMAT(S52X,315)
T T UPRINT_QUT SOLUTIOM PDINTS FOR EACH N -
T PO 34 N=M1NZ o e
TERINT 36LI&I_{_@!.TLAT!5 S TLON(N) , E{NTy INC(L sNoL=14N5) S
35 FORMAT{FS.( Fl203,Fi3¢3,Flla%,112,415) o o
36 (ORTINUE - -
E iC 10 115
FND - - -
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APPENDIX A - Concluded

Program LARC Flow Chart

(TProgram LARC J

(Read in obs site data )

| Read in AZ-EL data & store |
¥

[ cail sorT |
T

[ Call BCOEF for each site, & each data pt. |
Y
[ Read in estimated middle pt. of cloud |

X
[w=48 wp=1 |

115 - i
———*—{ Trial pt. = Estimated pt. ]

X
DR=.1 N=N+ND |

[ cail cerecw |

Call PAZEL |

[ cair minisoL  |e=jcall LOMMIN |~+{Call SUMRES

Call RESDUE |

[ call GoNGor |

| store solution points _]

End of AZ-EL curve

Yes
at all but one site? g

RMS residual LS e
too large? N
No
N too large

or too smalil? Yes N2=N
_ Print
Ng=?% output

L H=H+DNA*ND ]
¥ )




APPENDIX B

SUBPROGRAMS

REUTINE GGRGCN (GLAT yHy CLAT, CR)

ikl QJHPJUIJNE T” C JVLRT GEQGRAPHIC ‘ATITUDE GLAT _AND AL 1

_*%x T GENCENTRIC LATITUDE CLAT, AND RADLUS -CR

—| \

1

-t |

UDF _H_

N=E378.155 % A=6356.784 & E=BXB/ASA _L L
UREA/SORT{letFETAN(GLATI®#2) g z SR¥EXTAN(GLAT) -
FPERYHECOSIGLATY % IP=Z+HXSIN(GLAT) L - B
CR=SGRT(RPIRP+ZPHZPT & GCLAT=ATANZ(ZPsRPI o

CRETURM. f__ENO

,quh"UTI\E hCNu HACEAT s CRyGLAT 4 H)

_R%x  SUBPINTIHC T CINVERT GERCENTRIC LATITUDE CUAT AND GEOCENTRIC RADIUS CR T

# OGRAPHIC LATITUDE GLAT AMD ALTITUDE H.

CA=E37R.1u6 3 F=14/208,3
F=CR~ASARES2 % {1 o= IS {Za*CLAT 4o 5% (F /4o AFF/CRIFICUST 4a*CLATI~ 1ot)
CLAT=CLAT+AYF JCRESIN(2FCLAT 4t ARF /ORI %% 2% (1o —CR/7d4a /AIRSIN 4a*C LAT)
RETURY 8 END

 SUBBOUTINE PAZEL{SLAT,SLON,SH;PLAT jPLONSPRAZ,EL) -
¢ o o L L
Cosm#3GIVEN AN RS SITE 5 (IN GEOGRAPHIC. COORDINATES) AND_

G n pLINT.P (IN GEQCENTRIC CNORDINATES) IN SPACEs FINO THE

CIHE-NE-5TGHT (AZ,ELY | FROM 5 T &

C
A=£3T78. 166 08 R=61EE, 784 Ly E=BERLALA : e .
SEALSORT{ L, +EXTAN(SLAT ) %%2) S T=RAESETAN] SLATY e
¢ FJUJUTk GENCENTRIC CARTESIAN COMPONENTS CF 085 SITES .
=RESHEL IS SLAT) §  75=7+SH%=SIN(SLAT)
Xg SRACSTSLINY % YS5=SRESTIN{SLONI . _ - _.
* LCHAPUTE GEJCENTREC CARTESIAN COMPLNENTS CF PLINT P L 3 o
APEPRRCAS{PLAT)®COSEOLONY oo e
¥P=PE TS (PLATY RS TN (PLONY f  ZP=PRASIMAPLAYY » —
* LOMPUTE COMPONENTS 3F VECTOR NDIRECTION FROM_SITE S T4 POINT P o
.“"ﬁﬂ XP-4S 5__YAheYD-YS % 2A=7pP-7S
* CUNVERT T TOPOCERTRIC CARTESIAN CCMPONENTS

|.X= —XI\*?[ NS NIH—YA*L"‘S(SLJNI
pv-—xn*%[n{:LATaaCUStstnwl- A*SIMISLATI®SIN(SLONI+ZA%COS(SLAT)
PZEeXARCAS (SLATI*COS (SLON e Y A*CTS [SUATI#SINISLONI# ZARSINSLATY
# [ﬁ““UTF AZ-SL DIRECTION
AlL= -‘\_T_A[‘Z( ])5, ]Y _l__“ .
"‘L ATANZUDZ SGRT(DXHTX +DY*DY )
HETUR: & END
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APPENDIX B — Continued

SR TENME STRTIL ) . - e e
O LINEA A2 5 190 )y EL(S 4190y RO I3, 5, 1G0) iP5 Ve NBISY P

LESEREETHIS SURPOUTINE SCRTS AZ-E£L _DATA IN_FITHER INCR2FASING OR DECREASING VALUES
: P F FLy DEPENDING ON THE VALUE OF L, S0 THAT £IRST _VALUE ALWAYS CORRESPONDS

3 TCOTHE HIGH ALTITURE EMN OF THE CLOUD, S

g3 xS AUST 9E MUNIFLED FNR A DIFFERENT SITE COMEIGURATION N2 CLAGD

* BIFEMTATION,

1 AST=(=lad™=L % N=NA(L) o
1ol T=14 & K=N-1 . BT e

o PROFLIVATION ANGLE CF ONC POINT IS EQUAL TG THAT OF ANOTHER, T

P FRCHANGE THL (WE POINT WwiTH THE VERY LAST POIMT ON THE LESTy o

. AN DECREASE THE TNTAL NUMBER DF DATA POINTS MY 1, .~~~ o
CTLLT JxlaK S TFLQEL(Lp JV=EL (L  J*LII*XS) 132y 27,10 o

z3 T T S e .

TEL=LL{L, ) $OTAZ=AI(L, 00 _

FLULy IV =EL L o2i t AZ(L,JY=AZ{L,N) o e
CLL N =TEL % AZIL MI=TAZ L ) -
woTo -

1 TFL=tL(L.J! & TAZ=AZ{L, 3} - -
TGy Jd=it {L g d+ i) 4 AT, ) =AZ(Lyi+]1) ] k -
“L(L,J+1I=TPt O AZ(L, J¥UV=TAL -

1o CORT LN 0D et TmT T
FET R % B ’ ) T ) B i

SURRGUTINE RC“EF(L;N’
13AME; NILINFfﬂi(Jflqu\;PL‘;;lvol;HC(B,S;lQJi

NPl 5 Y NBIS) LR

LIMEMSTON AL33),RI30,0050,3),1P(32 T
TG Rk TS STIREDUT INE FS TRE THREE COEFFICIEMTS FOR A SECCND DRDER
= TEAST SGUARES CaRyE FIT TN THE AZ-EL DATA_AT EVERY DATA PLINT No
# THE COMPUTATIOM USES NO DATA POIMTS CENTERED ABOUT %, EXCEPT AT THE ENDS
% FHEFE NGOEND PUOINTS ARE USED. TufxmogptwquijABIABLE IS e
* EL{Lp%WVI—EL{LgNt WHERE NV 1§ WITHIN THE SET D . o
g T , ———— - :
SLRENG P . o e aa B
13, L=H0-2 . o
#t [¢ THERE AREC FEWER THAN 8D DATA PUINTS, THEN DECREASE NJ . -
LELUBIL WL T 60 Tnoo 7 e o ‘
%x THE _MIDBLE PCIMT NF THE SET N, IS CALLED N® AND [S UJSUALLY THE SAME AS N,
M=3 & NM=N & Ne={NCel)f2
#* AT ENDS DF CURVE, NM 15 SPACED ML POINTS FROM THE ENDe L
IF Ml ToNCY MMaNE t  TF(NoGT.NRIL)+1-NC) NM=NB(LI+1=-NC
et THL FOLLIWING COMPUTES THE ATRICES A AN B WHICH ARE USED TD FIND THE
* LA:T SNUARES FIT, : e - .
_ “_”HP Zo l=lyny
2y ,L{I,li-lg , S e
neoEY =2, & DU 55 I=1yND. & NY=NM-NCeI S
5L _th,Jl—C(I,j- VHUELLLpNVI=EL (L 4N o o . _
) 010D 1=1,M o £ D0 100 _J=14% & A{I,N1=0, )
OH ico K lg’\if‘ e
LG Ath, B =ALT 1140 (K, LI*CLK, J)
10152 fT=1y» % B{l)=Ds o L _ I .
BCOLED K=14¥ & NV=NA-NC K - e
150 r(l;-%tl)+clx,flﬂtaz(L.NVi—AZ(L.Nil*C SCCELILy NIFELCL NV /2) S
% SIFED SULVES THE EGQUATICH AX=B. THE SOLUTITY X IS RETURMED IN 8, WHICH
* CONTAING THE 3 LLEFFlrIthﬂ DtS!RF0977 o e —— e

LEALL SIMEQ{A,M, B, 140,1P, %, I5)
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APPENDIX B — Continued

IO P [=1, o
*® ~ THE Lrp;:r:[(:[ﬂl’s B ARF STLS«FD I’” HC. o
200 MCLTyUyNFERUTY o

TR (R CQaNBILY Y PRINT 301,L NI~
301 FORMAT(#GL=#12% N= *iz}f" CNO=%13)
FETUAN T4 =Nn _

Clie TR E S TEME (A7, PE 4Ly XD

s YR AR DL ANT AZ T A PIINT PRGN STATIGK Ly FIRW
R 3 PRSI H

THE.

AL [ANGUL AL DISTAMCE SFTWREN THE POINT ANMD THF AZ-EL CURVFE)

G LENCZ AT, A0y e LR, 16T nr(‘}lpi,]:q"f\'P-[ B
OIS TUS /NS,y SLATES Ny SLONTEY
FRPlLP Rl ) a7 Tt 1o

sRwNEFLRR POTRT §OJURER Oh CURVE CLOSCET TO GIVEN 0AF PEL

“-:i"pf'! ki =l

VaNRLS) LR
P SHUS ) g WTLS ) DEG

L

r:-((“QZ*ﬁ?(&,”lﬁﬂf q(Dlebv*2+£”FL EL!LpNi?“*Z
it alide LYY d=—1
l—'l'us

"

1 b

liow T

PENE YA T AT Ly YT C S UPE LY IR 2 (PEL-EL{L g Ny I*¥

S T LF(4enTal AlL e IRadlalTal) GO T7 2
z

TFUOS 0l TenS™) G0 T 1 &8 1F{NeGT.NLeLY BT To 2
TF(,LTe ML B2 70 2

D==-1 LI SR SN £ DB5SN=DED
e T
Z fEl=t ¢ Pl y="
récess0 WO TE RESINUAL FROM A0 CPEFFICTENTS CORRESPUNDING T N
awla¥zi="1 (L) % Y1={PAZ-AZ(L,NIIXCIS{(PEL+ELLL M11/2,)
FOSSGRTANLEALAYLIYY L ) S -
L=nC {1y ™D 0 C2=R01 2Ly N G200 3,0 MY

* CALCULATE THE CAOFFFICIENTS OOF The CURIC

P 21a8¥02/0E % QEllot(2%C2+2.%(3#(CI-Y1))/2,/C3/C3

CECL ALY -ALY /24 /03103
AT LB BE(2ePEPoCL KQYEP/ T4 4R

2

GCEaT i L e R ARA ST

i TR DISCATYINANT 15 LESS THAN ZER(, THFRE ARE THEFE RFAL RICTS
TE( W alFalol B T 7 ..
SISCR TAINANT IS5 GREATER THAN IERQ, COMPUTFE THE ONF REAL ROOT.
A=A IRTINCY § CA=—1/2, +RD0 3 CBs-B/2.,-R0C $ E=l4/3.
n-;lb\{lﬁﬂfi(AEI**¥ rA)+<IhN{tABR{CR)I**E THI-P /3,
YL 4 (C2F03 % Y % S{V=Y I = (Y=Y LI+ (X=X LI *(X-X1)
=502 1405 5 PETUQN o

c GHT=ACTS (=P /2, /SQRTL=A%AYA/ 3T ) | L
NSC=1ale

2 OOTE TOE THRES REAL RITTS AND FTHD TRE SHALUEST.

£ ol=t,y o )

yE2 s SURTI=A/ I 1P Er S (PHI/ 5. +120. % (11 /DEGI=PF 3,
YICle (D240 ) %X f 0 DS=IY-YIYR{Y=VI e (A- X1V {X—-X1}
TE(DSGT.08) BS0=0S . . -

G OMTINUE : e - -
SELAaRTI{DSM™) $  RETURN

ammros s b 1F A PIIMT SJLJTION L9=2, AND THE FOLLCWING IS USED

13 =1 e o e
y=(PAI- I\/’{L,VH’FF'Q(E'LH,KH
REREL =Nk D= RQ%T(X*Y*Y*Y)
FETIAN % (ISR}
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T SUMFNUTINE SUMRES (PLAT,PLON,PRyE)

APPENDIX B -~ Continued

EREEGLVEN A PCINT, CALCULATL THE ROOT-MEAN-SQUARE OF THE RESIDUALS FROM 7~

S

ALL ORSFRVATION SITES,

TkHEsEI[ THE POINT 1S OFF THE END OF _THE AZ-EL CURVE OF A SITE,THEN THE AT FACTOR

gakEx F oWILL D[“‘EINI‘EH THF PFQI{‘UAL ERCM THAT SITE AS DETERMINED BY DIST, THE
'_*#**!#A vGUL AR NISTANCE I-DSd_Tiit END DF THE CURVE. HIWEVER, FOR THE TWD SITES

SrswxwICH HAVE TME LEAST OTSTANGCE FROM THE END, MAXE DIST=0p, SO THAT F=), WHICH

wAdrxG [ VES. FULL WT,.

24

T N AN S ITES /NS g SLAT 15 SLONIS ), SHIB o WT(5Y4DEG ____ _ N
{;?’AEWP\/L[N‘:/AZ(4,19017!-Ll y 1901 ,BC L3, 5 190y NP L 5 FeNBIBI,LP
DIMENSTOY 0453,018TI8) e e
Az BADEG e _ S
NECL I=1aMS 0 F TAn=0 . e

* O FIND_PAZ AND PEL _OF POINT

- CALL PAZEL(SLATUIV (SLINTS pSH L3, PLAT PLONG PR, PAT,PELY . —

% CALCULATE RESIDITAL [ R
CALL RESDUTIPAZIPELy o DT o XD e T
TEENP () aEQa LaiRa NP 1Y o ENLNBLEYY IND=1 S

1 BISTL Sy =INDEXD S . e e

wrrnsSiRT D1ST INTO INCREASING ORDER

' T 1)3 T= 1,% t K=NS-1 L e

¢ TF(OIST(=DISTOSe11) 195, 109,10 e

13 , . ..& DTEM=D0JY
CIST{N =0T1STU el & DUI=D(Js11 e
DISTO L) =TEAD s A =DM

1032 CONTIMUE . 4 F=0

o T2 L=1¢NS % IF(L.LECs2) NIST(L)=0,

FEASLARDISTOLIY
= CALCULATE R¥S RESTMIAL o L o
2 SEA DALY RWT (L) *%F ) %2 o
=SRRTAE/NS) ) L
______ &Tum t END -
SUsPOLUTINE  LTLLAPLAT g PLON PRy DR g EM)__ e -

sxgs R 00 A GIVEM PLAT AMD PR, THUS SUBRAUTINE FINDS . PLON_WHICH GIVES THE_ R

* STE LAY RS RESTOUAL SN

g [ NCKE Y MT 0L BY DA UMTIL E2 1S THE LEAST F THE THREE CNMSECUTIVE

& SES SESRTOUALS EL, 82,03 ISING THESE RESIDUALS_COMPUTE APPROXIMATE PLCN

- CHECH GIVES THE 2IN1#I8 (WETH RESPECT To PLON) RMS RESIDUAL EW, P —

% THED NeLREASE NA AND RFEPEAT THE PROCENDURE, L e —
Di=i,l4l002EN3500R § DEG=1B8Ja/PI . e
ST 4 DA=OR -

to PT=rTH] e
B . e e e — o CoTT T T

# FINDRYS PESTOUAL EOC FIRST POINT, T -
LALL SUMR LS {PLAT y PL O, PR, EL
MiaMlel .
Lot = PLTIIALA S CALL SUYMRES{PLAT ¢PLONyPR4EZ) ,,

=511
TFfiZalTeflY G0 T7 3 & FS=C2 % F2=F1 ¢ F1=F5 & .
FLEPEPLO e s e
2 PL. L= PL N #0A % CALL SUMRESIPLAT,PLTNGPR,F 3)
SRS
(RO [oliTa2d] 57 TO 5 o T
TF(3.0ToL2) 50 T0 £ £ [l=F2 & €£2=r3 ¢ 6703



APPENDIX B — Concluded

FRi™ THRLCE RESLOUALS FIND NEW PLON FAR MINIMUM RESIDUAL

CDAR={{3=FL1*0A/ (E1~2%C2¢E3) /2, & BLON=PLON=DAYDDA o
LAl SUMRES[PLAT  PLEON,PRyE¥)
IFILF lot al,.,’ n’]dT "r\!] [ e

FORS AT ITERATIOMS TN LONAIN=RTS)

TEST Fru 2 1 TFRATICNG ) o L

JE(UT 0B, 20 BETHRY T

EERLASE STFD OSTIE i o e
A=YA L1,

T 1D oo T -
SR o L

**}-aft_a..&ﬂ.Ut%E;_t;-l.f?_'I*_»_E_ T F ﬁn A shL.u"r ':'"a{u’ a'»k',Nfir«i’i_w_l__‘zisf'é_"}ugée’«g OF THE RESTOUALS

b4

GF OALL SITES, WHILE KEEPRING PR FIXED,

C AERmus (ML OEMENT DLAT BY DRy CALLING LUNMIN TCO FIND THE MINIMUM RMS_ JF RESIDMALS

EoRE oA BB

3=

(A} THE CJRF\};‘U’F‘“DII\G PLONY

FOROCACH PLAT, UNTIL F2 15 THE LFAST DF TE_E___(‘,_}_[\I_SEEUTIVF “lNIMU‘J‘l RW% _
FESTIDIALS Fl,E2:0 3a ) - e
ISTHG THESE RESTDUALS f"l"OUTE ADDR"XIMATE PL&I _\;_¢_l_—j[__CH G[VEQ "HE e
oMy M (I TH RESPECT T RGTH PLAT AND PLONMN) RFSTIDUAL FE,
TrE¥ DECREASE DR AND RLCITERATE. - L B
P1=3 .lél)ﬁ.Zb‘%*S‘%"H % BEG= 180 AP e e
(7= ... .t -.1 e
. DA= DR R L1=0 B O
CPIND FIFST PLAN oHIGH MINEWIZES THE RMS RESIOUAL
CALL LON™TH{PLAT,PLONgPRyDA,ELL e R
FLAT=PLAT +0F 6 CALL LONMIN(PLAT zPLIIN, pmm E2} o
[F(E2aLTeF1) G TO 3 t ©£S=£2 ¢ EZ2=F1 3 _ L ]
PLAT=PLAT+DRE , o e 7;
H_AT PLAT+NR I S o7 Y LCNMINIOLAT 4 PLING PR, DA, ESY
Ll=t I+l
'F"iTI ( Gf‘ T8 _' i i
[F(EZ GT E2) GH Tﬂ 5 % EBl=E2 % LZ Fa _j{v__ G{ I']_ 3 e
. THREL “&C\I[“MLb FIND NEW PLAT FQOR MIN_I_’M‘A__%MS REQIDUAL. Lo . e
"¢F3 cl_i"‘ﬂ‘?l’(E}??Z*‘EZ*E3,/2» 7§~_72L_5T— AT-DReODR
LALL L’WMI L[ PLAT , PLON, PR sCAREY % IT=1T+} % DE=E*DEG__ o
TEST FOR N3, UF ITERATICNS, AND OECREASE STEP,
CTENTToBQe Mt GO TG 6 % DR=ORXDF ¢ G2 TRL
CLONTINYE o . i
£ END - T o
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APPENDIX C
COORDINATE SYSTEMS AND CONVERSIONS

This appendix will describe the coordinate systems used and the subroutines
involved.

Earth Model

For the purpose of triangulating from widely dispersed stations over the Earth's
surface, the Fischer spheroid was adopted since it is believed to provide the best avail-
able global fit to the actual gegid. The relevant parameters are

Equatorial radius: A= 6378.166 km
Polar radius: B= 6356.784 km
A-B 1
Flattening factor: F=r— =
- A 2098.3

For this model, the deflection of the vertical, that is, the angle between the normal
to the geoid and the normal to the Fischer spheroid nowhere exceeds 30 arc seconds which
is sufficiently accurate for the present purposes, since pointing directions used in trian-
gulation are referenced {0 the stars rather than to a iocal horizon.

Geographical Cogrdinate System

The geographical coordinate system is the conventional system of latitude, longitude,
and altitude. Figure 6 shows an exaggerated spheroidal surface corresponding to the
Earth's sea-level surface. The geographic latitude GLAT of a point P is the angle between
the equatorial plane and a line drawn from P perpendicular to the spheroidal surface, The
altitude H is measured from the surface at point G to the point P. The longitude GLON is
measured eastward from Greenwich,

Geocentric Coordinate System

In this system, O is the Earth's center in figure 6. The X-axis is directed toward
the intersection of Greenwich meridian with the equator. The Y-axis is directed toward
90° east longitude in the equatorial plane, and Z is directed toward the north geographic
pole. The point P is also located by the geocentric longitude GLON, geocentric latitude
CLAT, and radius CR from the Earth's center.
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APPENDIX C - Continued

Topocentric Coordinates

This is a local system with center at some observation site S (see fig. 4) with the
DX,DY plane coincident with the horizontal plane, with DX directed toward east, DY
directed toward north, and DZ directed vertically (that is, perpendicular to the surface of
the spheroid). In the polar version, a point P is located by azimuth angle AZ measured
clockwise from DY (north), and elevation angle EL measured up from the horizontal plane,
and range RA measured from S to P.

Conversion From Geographic to Geocentric

This conversion is accomplished by using subroutine GGRGCN. Reference to
figure 4 shows that the point G on the spheroid follows the equation

R g2

—_—g—_—=1

A? p?
where

R = )_(2 +Y2

iz  B’R
R 42y
hence
A2 7
tan GLAT = ———
B?R
or
Z =R E tan GLAT
where
B2
E=_"-
=72
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APPENDIX C — Concluded

Substitution in the original equation gives

A
R= =

\[1 + E tan®GLAT
The geocentric coordinates of point P are then

RP =R + H cos GLAT

ZP = Z + H sin GLAT

CR = |[RDPZ + ZP2

Geocentric to Geographic Conversion

This inverse conversion cannot be obtained explicitly. Subroutine GCNGGR uses
the following approximate formulas derived in reference 12,

The altitude is given by
1/E AF

H:CR-A+1AF1—cos (2CLAT) + ={= - —=llcos (4CLAT)-1>
- - — 2—— — 2\4 CR -

where CLAT is the geocentric latitude and CR is the geocentric radius.

The geographic latitude is given by

AF AF\2/ CR
GLAT = CLAT + —= sin (2CLAT) +{—==1 {1 - —|sin (4CLAT)
CR CR 44

It should be noted that all angles must be expressed in radians.
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TABLE I.- COMPARISON OF VARIOUS TRIANGULATION METHODS

Author's| Type of Number of .
Reference ™ e object  |observation sites Method of solution
2 Brown |Point Marny Least-squares method
3 Hogge |[Point Several Least-squares method
Straight line 2 Intersection of ray from one site with
plane from other site
Curved line 2 Intersection of ray from one site with
surface defined by 3d order least-
squares fit to data from other site
4 Lloyd [Points 2 Midpoint of minimum skew distance
between rays from each site
Straight line 2 intersection of two planes
Curved line 2 Intersection of ray frem one site with
surface from other site
5 Whipple [Straight line 2 Intersection of two planes
6 Justus Point 2 Equal residuals
Curved line 2 Intersection of ray from one site with
surface from other site

30




3 STATION TRIAMGULATION

TABLE 1.~ INPUT DATA FOR ILLUSTRATIVE EXAMPLE

SLAT= 3146853  SLON=-110.8774  SaLT= “2,3640 o i
SLAT= —3C.1666  SLON= —70.7873 SALT= ~ 2,134  ~ 7T oo oTTeom—es o
. SLAT= 37,9324 SLiUN= -75.4717  SALT= _ L0106 T
_ TIMt 3 HR 18 MIN  13.) SEC - o
__STA 1 PT 1 AZ= 115,0652  ElU= 43,2733 MT_HOPKINS CA* (-2 3,18,1
o 3TA 3 PT 2 A25 15,1804  EL= 43,2385 MT HOPKINS CAM C-2 3,18,1
_STA 1 _PT_ "3 AZ= 11942919 _ EL= 43,1431 9T HOPKINS CA% (-2 3,18,1  _  ~
SYA i PT & A2= 119,4333 43,0773 MT MOPKINS CAM (-2 3,18,1
LeTA L RT B _AZ=z 11%.539%4 = 4340121 MT HOPKINS CAM £-2 3,18,1
o S8VA 1 PT 6 ALs 11905643 _ 4249467 MT _HOPKINS CAM C-2 2,1B,1____
_STA_ L PT_ 7. AL= 119.R0656 L 42,5824 MY HOPKINS CA™ (-2 3,18,1
o STA L PT B A= 11909304 Flz 4268175 MT HOPKINS CAM g__?._?ll%zl e ,
STA_ 1 PT _ g AZ= 120,0707 _42.7521 MT HUPKINS CAM €-2 3,18,1
STA 1 __PT_ 10 Al= 120.19%1 42,6868 MT HOPKINS CA C-2 3,1R,1
S1A 1 PT 1L AZ= 120.3113  ElL= 42,6210 MT HOPKINS CAM C=2 2,18,1
STA 1 PT 12 A= 12044449 ) T A9 : 4022 39l8,1
STA L PT 13 AZ= 12045667 42»‘:EﬁLﬂI.-ﬂQ?i!.'iL@AE,,,C 2 3918,1 N
STA L PT 14~ aZ= 120,5780  EL=_ 4244229 M1 HOPKINS CAM C-2 3,18,1
STA 1 PT 1L AI= 120,1G76 &L= 4203568 MT HOPKINS CA“ C=2 3,18,1 _
STA 1 PT 16  Al= 120,T223 22399 MT HOPKIMS CAM -2 3,18,]
5TA 1 PT 17 AZ= 121.0426 ‘_*_2__22FE.;"".T...HFE’&D!.&Q.&-.EJ Balsel
STA 1 PT 18  AZ= 121.171% 42,1565 MT HOPKINS CAM €=2 3,18,1
STA 1 PT 18  AZ= 121,2412 EL= 42,0879 MT HIPKINS CAM C-2 3,18,1
STA 1 PT 23, AZ= 121.94022 4220228 _MT HCPRIMS CA# C=2_ 3418,1 N
STA 1 PT 21  _Al=.121,5237 4129556 _MT_ HOPKINS. CAM C=2 3,18,1 .
STA 1 T 22 AZ= 121, f_&{;‘_(‘_ 41,8887 MT HOODKINS CAY C-2 3,18,1
STa 1 PT 25 A _ 4108212 M7 HOPKINS CA¥ C£-2 3y18,1
STaA 1L PT 24 A EL= 41,7536 9T HOPKINS CAM C-2 3,18,1 o
STA 1 PT 25 A FL= frflj@fﬁﬁiwﬂ _HAPKINS TA™ -2 341841
STA 1 o1 Ze Al 2411656 EL=_ 41,6182 MT HOPKING CAM (-2 3,18,1
$TA 1 AT SV E 22271 EL= 41,5455 MT HOPKINS LAY €-2 3,18,1 e
STA L PT 28 "A7= 122.,3316  EL= 41,4800 MT MOPKING CAV C-2 3,18,
STA 1 PT 2% A2= 122,452%  TL= 41,4121 ™T HOPKINS CAM -2 3,18,1 j
$Ta 1 A= 12745736  FEL= 41,3435 T HOPKING CAM C-2 3,18,1 .
§Ta 1 CAZ= V22,6864 FL= 41,2748 MT HOPKINS CAM C-2 3,18,1
STA L AT="172.8074 ~ EL= A1.2057 T HOPKINS Cav ©-2 3,18,1
STA 1 AZ= 122.41€5  FL= 41,1368 MT HOPKINS CAM €-2 3,18,1 e
STA L AZ= 123,3379  EL= 41,0574 T HOPKINS CAM C-2 3,19,1
5TA 1 AZ= 123,1263  EL= 449988 MT HOPKINS CAM C-2 3,418B,1
5TA L AZ= 123.2760 LL= 4045294 MT HIPKINS CAM C-2 3,18,1 B
$TA 2 CAZ=T3%9,53335 LU= 49,1204 CHILE CAM D-3  3,18,10
STa 2 Af= 34 = 49,05z4 CHILE LAM D=3 3,18,10 ~ "™
COOSTATZ BT TR AT = 34 L= 4F,9832 CRILE CAM D=3 3,14,10
STA 2 PT & AT = 34 Bi= 48,9175 CHILE CAM D=3 3,18,10
STA 2 PT 5T A7: 34 CEL= 48,8499 CHILE CAM D=3 3,18,10
sTa 2 PT & T AT=T34¢ E 4¥,7822 CHILE £AM D=3 3,158,190
STA 2 PT T 77TTAT=T3% F 49,7143 CHILF CAM D=3 2,19,19
STA 2 PT & Az= 34 £ 48,6468 CHILE CAM D=3  3,18,10 e
5Ta 2 PT 6 A EL= 48,5739 CHILE CAM D=3 3,18,10
STA 2 PT 19 A7 E) " El= 48,5114 CHILE CAM D=3 3,18,10
STA 2 PT 11 AZ= 345,6589  Fl= 48,4436 CHILE CAM D=3  3,1Rs10 T
STA 2 PT_ 12  Al= 34G.0853 . FL= 4843762 CHILF CAM =3 3,18,10
STA 2 PT 13 AZ= 39,6937  EL= 48,3075 CHILE CAM D=3 3,18,10
§TA 2 PT L4 AZ= 369,1075  Fl= 49,2403 CHILE CAM D=3 3,19,10
§TA 2 PT 15  AZ= 34%,7223  EL= 4Bel732 CHILE CAM 0-3_ 3,1R,10 N
5TA 2 PT 1 AZ= 349.739% EL= 4841047 CHILE CAM D—-3 3,184,190 _ -
STA 2 PT 17 AZ= 345,754% TL= 49,0372 CHILE CAM -3 3,18,10
STA 2 PT 1% AZ= 34G.T76%1 Fl= 47,9686 CHILE CAM D=3  3,18410 . . o



TABLE II.- INPUT DATA FOR ILLUSTRATIVE EXAMPLE -~ Continued

STA 2 PT 1% Ad= 3%9,7797  Fl=z 47,9017 CHILE CAM D=3 3,199,190
STA 2 PT 2. AZ= 348,7418 EL= &7.,8341 CHILE CAM D—-3 3,18,10 B
STA 2 PT 71 AZ= 347,3)h7 Fl= 47,7669 CHILE CAM D-2  3,1%,10
STA 2 PT 72  Al= 3LC_ 8234 FlLz 47466893 CHILE CAM D=3 _3,18,10
5TA 2 PT 23 A= 349,937 EL= 47,6326 CHILE CAM D—3 3,18,190
STA 2 PT 24 AZ= 34G,8514 EL= 47a3647 CHILE CAM D=3  3,18,10 B
51TA 2 PT 25 A= 340G,4128 FLz_ 4744974 CHILE CAM D=3  3,1B,10
$TA 2 PT 24 M= 345,3TRZ EL=  47.4299 CHILE CAM 0—=3  3,1RB,10
5Ta 2 PT 27 Al= 3450,R911 EL= 47,3620 CHILL CAM D=3 3,18,19
STA 2 PT 22 A= 3£9,5023 FLe  47.294% CHILE CAM N=3  3,18,13
STA 2 PT 20  AZ= 349,0158 FL= 47,2261 CHILE CAM -3 3,108,100
STA 2 PT 33 Al= 13:%,0784 Ft= 4741509 CHILF CAM D~3 3,18,10
STA 2 PT  3) AT = 3fc o418 EL= 4740913 CHILE CAM T=3 3,18410
STA 2 BT 3: Al= 359.3535  LL= 47 C237 CHILF CAM D-3 3,18,10
STA 2 PT a2 A= 349,20677 L= 46,9561 CHELF CAM 0-3 3, 1&.13
5TA 2 PT 14 A= 349,908 EL= 40,9992 CHILE CAM D=3 3,18,10
STA 2 PT 3% Al= 33G.975%  EL= 4648210 CHILE CAM 0=-3  3,19,10
5TA 2 PT 3o AZ= 350.0130 ElL= 4647535 CHILF CA™ D=7 3,18,10
STA 2 PT 27 FL=z 46,6855 CHILE CAM D=3 3,168,193
5Ta 2 PT 33 TELET 4G, 6182 CHILE CA® D=3  3,18,10
STa 2 PT O sc FL= @€o5506 CHILE CAM D=3  3,18,10
STA 2 PYT 40 TEL = 4€.4829 CHILE CAM D=2 3,18,10
sTA 7 PT 41 ThyE AcﬁhiéémeLEijEi =3 3,18,190
5TA 2 PT 42 " Fl= 4él.3474 CHILE CAM 06-3  3,18,13
5TA 2 PT 43 Fl=  he.279R CHILE CAM D=3 3,149,192
STa 20 DT 4 [L= %ce2l23 CHILF CAM =3 3,18,10
STA 2 PT &% Fl=  &4é,1446 CHILE CAM n=3 3,139,310
STA 2 pT ¢ Tl= %e. 0748 CHILE TaM 0=3 3,108,410
$Ta 2 PT 47 FL'= " 4620091 THILE CANM 0-3 "3,18,10
“Ta 2 PT 4u fL= ”,.9419 CHILE Gapd =3 " 3,708,107
§Ta 2 PT 4 flz 45,8742 CHILT CAR p=-3 3,718,195
5Ta 2 prT oA FL= qJeﬁcea CHILE LAY D=3 3,1B410
STA 2 FT 51 EL= " 45,7384 CHILE CAM D-3 3;1@713“"‘
STA 2 FT 52 CELU= '45.57@5 CHILE CAM]
STA 2 PT &2 NI N
STA 2 PT 54 FL=
STA 2 pT BT L=
STA 2 BT " g =
3TA 2 PT &7 = 7 3,iBy19
3TA 2 PT GH A= 33U0L701 TL= 45,2620 CHILE CAM N—=3  3,19,10
STA 7 PT 34 Al= 3502470 E{= 45,1934 CHILF LAY D-3  3,18,10
STa 2 PT &L Al= 3’.;.2'<‘-93" L= ""1255 CHILE CAM D=3 3,198,107
5TA 2 PT &l AZS 3% TEU=s OAEIRTYTHRILCE CAM =3 3, 18,10
STa 207 P TErT UATE ?,u,algr FL= 4a.oa¢s CHILL CAM -3 3,18410
5TA 2 PT o3 AZ=T 3T0LIECT TTTRLE UTLAL,O218 THILE CAM D=3 3,18,19
5TA 2 NPT A% AT= 35,3855  TL= 44,8533 CHILE CAM D=3 3,19,10
5TA 2 PT &5 Al= 3E(4,3578 FL= 44,7854 CHILE CAM D=3  3,18,190
STA 2 PT_ && AZ= 350,3699  EL=_ 44,7175 CHILE CAM D=3 3,18,10
_sTA 2 PT_ 57 Al= 35003859 _ ElL= 4446494 CHILE CAM D=3 3,318,310 _
2. : Al= 350.,3651  FlLe 44,5811 CHTLE CAM D—-3  3,18,10
L2 _ AZ= 35046368  FL= 44,5129 CHILE CAM D=3  3,18,10  _
2 AT 35044237 FElLT 44,4445 CHILE CAM D-3 3,18,108
2 PT 7L Al= 23)e4313  Fl=__ 44,3759 CHILE CA™ D=3 3,13,10
2 PT T2 Al= 359,4443 EL= _ %4.3071 CHILE CAM D=3 3,18,10
& PT 73 Al= 350.458h Fl=  44.2390 Caiiﬁnﬁéﬂ_ﬂ-"__é_Le.lﬂ__
2 PT T4 A= 35C,4677 FL= 44,1734 CHILE CAM D=3 3,18,10
2 PY_ 75 AZ= 35004737 _EL= 44,1016 CHILE CAY D=3 3,1%,1Q
3 _PY v Az= 1R2.304)_ EL= 50,5829 AC WALLOPS AC-3 3,18,10
3 PT 2 AL= 132,308  Fl= 50,6889 AC WALLOPS AC-3 3,18,10
3 PT 3 AZ= 1R2,3122 EL= 5047940 AC WALLOPS AC-3 3418,10
3 PT 4 TTAl= 182,319? L= 5049018 AC WALLOPS AG-3 3,13,10



TABLE II.- INPUT FOR ILLUSTRATIVE EXAMPLE — Concluded

$TA 3 T 5 = . Ei= 51.0146 _AC WALLOPS AC-3 3,18,10

STA 3 PT & TAZ=182,3490 kL= 51,1274 AC WALLOPS AC-3 3,18,1G

STA 3 PT 7 Al= 192,351l EL= 51,2313 AC WALLOPS AC-3 3,19,10

STA 3 pf TR TTTAZ=182,3554 L= 51,3366 AC_WALLOPS AC-3 3,18,10
STA 3 PT 9 a7= 192.3601 El= —_"5_1_'&5_17_3_5_HA.LLTLF’_S,AE;"A:}_B!10 e
$TA 3 PT 10 AZz=18J,3723 EL= 51,5526 AC_WALL0PS AC-3 3,18,10
STA 3 PT 11 aZ= 132,332} FL= TEl,6622 AC WALLOPS AC-3 3,18,:0
STA 3 pT 12  A7=7182.3891  FL= 51,7683 AC WALLOPS AC-3 3,18,30
§TA 3 pPT_ 13 ALz 182,353 FL-= 51.8749 AC WALLOPS AC—3 3,18,10

sTa 3 PY Ti4a 182.4013% FL= 51.9808 AC WALLOPS AC-3 3,18,10 7
STA 3 pT Tis " aZ= 182,4039  FL=  52,0B44 AC WALLOPS AL-3 2;18,10

STA 3 BT 16 Al= 192.,4213 _EL= 52,1985 AC WALLGPS AC-3 3,18,10

5TA 3 PT 17 aZ= 192, 4277 [ EL= 523046 AC WALLAPS AC-3 341R,10 _

STA 3 PT 149 AZ= 1H2.,43£3 EL= 52,4123 AC WALLOPS AC-3 3,18,10 i
STA 3 9T 15 AZ= 187.443S 57,5196 AC WALLOPS AC—3 3,18,10

STA 3 "PT77T2G  AL= 107.4526  EL= 5246272 AC _WALLOPS AC=3 3,18,10
STaA 3 PT 21 TA7= 182,4045  FL= 5247376 AC WALLNPS AC-3 3,18,10
STA 3 " eof 723 TAI= 182.4739  EL= 52.8434 AC WALLOPS AC-3 2,18,10
STA 3 PT 7237 AZ= 182,476k  EL= 52,0492 AC WALLOPS AC—3 3,18,10-
STA 3 PT 34 TRIET182.%4972  FL=_ 53,0580 AC WALLOPS AC-3 2,18,10

STA 3 pT 3%  A7= 182449253  LL= 53,1636 AC WALLOPS AC-3 3,18,10

STA 3 BT Z& AI= 1R2.5001 _ FL= 53,27C3 AC WALLOPS AC-3 3,18,10
STA 3 PT 27  Al= 1%2,5070  EL=_ 53,3786 AL WALLOPS AC=3 3,1R,10 _
STA 3 PT 25 “A7= 182,5226 _ EL= _53.490% AC_WALLOPS AC-3 3,189,130

L= 1 N= 3§ T ON3J= 25 - j
L= 2  ®=_ 75 MO= 25 o

L= 3 N= 2B . P -
ESTIMATED TRIAL POINT ~ CAT= €,15C  LON==7€.779  ALT= 31500
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TABLE IlI.- SOLUTION FOR ILLUSTRATIVE EXAMPLE
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Figure 1.- Trial solution point P in space as observed from three sites
illustrating residuals D{1), D{2}, and D{3) due to errors in measuring
lines of sight.
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Figure 2.- Illustration of three surfaces defined by az-el data from three
observation sites. For the trial point P, the residual for site 1 is D(1).
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Figure 3.- Illustration of minimization of roct-mean-square residuals with
varying PLON and PLAT. EM is the minimum root-mean-square
residual for variable PLON at a fixed PLAT.
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Figure 4.- Ilustration of the relations between topocentric and geographic coordinates.
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Figure 5.- Illustration of an approximate angular two-dimensional coordinate
system with reference direction S-N, which is used in least-squares fit of
az-el data and computation of residuals.
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Figure 6.- Illustration of the Earth spheroid and the relations between
geographic and geocentric coordinates.
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